CASE: a framework for computer supported outbreak detection
نویسندگان
چکیده
BACKGROUND In computer supported outbreak detection, a statistical method is applied to a collection of cases to detect any excess cases for a particular disease. Whether a detected aberration is a true outbreak is decided by a human expert. We present a technical framework designed and implemented at the Swedish Institute for Infectious Disease Control for computer supported outbreak detection, where a database of case reports for a large number of infectious diseases can be processed using one or more statistical methods selected by the user. RESULTS Based on case information, such as diagnosis and date, different statistical algorithms for detecting outbreaks can be applied, both on the disease level and the subtype level. The parameter settings for the algorithms can be configured independently for different diagnoses using the provided graphical interface. Input generators and output parsers are also provided for all supported algorithms. If an outbreak signal is detected, an email notification is sent to the persons listed as receivers for that particular disease. CONCLUSIONS The framework is available as open source software, licensed under GNU General Public License Version 3. By making the code open source, we wish to encourage others to contribute to the future development of computer supported outbreak detection systems, and in particular to the development of the CASE framework.
منابع مشابه
Practical usage of computer-supported outbreak detection in five European countries.
This paper discusses computer-supported outbreak detection using routine surveillance data, as implemented at six institutes for infectious disease control in five European countries. We give an overview of the systems used at the Statens Serum Institut (Denmark), Health Protection Agency (England, Wales and Northern Ireland), Robert Koch Institute (Germany), Governmental Institute of Public He...
متن کاملEstimating the joint disease outbreak-detection time when an automated biosurveillance system is augmenting traditional clinical case finding
The goals of automated biosurveillance systems are to detect disease outbreaks early, while exhibiting few false positives. Evaluation measures currently exist to estimate the expected detection time of biosurveillance systems. Researchers also have developed models that estimate clinician detection of cases of outbreak diseases, which is a process known as clinical case finding. However, littl...
متن کاملEnglish-Persian Plagiarism Detection based on a Semantic Approach
Plagiarism which is defined as “the wrongful appropriation of other writers’ or authors’ works and ideas without citing or informing them” poses a major challenge to knowledge spread publication. Plagiarism has been placed in four categories of direct, paraphrasing (rewriting), translation, and combinatory. This paper addresses translational plagiarism which is sometimes referred to as cross-li...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2010